
CSRI Summer Proceedings 2020 3

EVOLVING SPIKING CIRCUIT MOTIFS USING WEIGHT AGNOSTIC
NEURAL NETWORKS

ABRAR ANWAR∗, CRAIG M. VINEYARD† , WILLIAM M. SEVERA‡ , SRIDEEP MUSUVATHY§ ,

AND SUMA CARDWELL¶

Abstract. Neural networks have increasingly been applied as state-of-the-art solutions to tasks ranging
from image and video analysis, to natural language processing, to strategic planning and control. These
investigations have yielded many different neural network architectures as various optimizations are pursued
with the objectives of improved performance as well as to improve computational costs. Furthering this
exploration, neural architecture search (NAS) has emerged as an algorithmic method of developing neural
network architectures. Weight Agnostic Neural Network (WANN) is an evolutionary-based NAS approach.
Fundamentally, WANN pursues circuit motifs which enable decent performance on tasks largely due to the
network structures that are relatively insensitive to weights and typically much smaller than an equivalent
performance dense network. Here we extend the WANN framework to search for spiking circuits, and in
doing so investigate whether spiking circuit motifs can also yield task performance that is weight agnostic.
In doing so, we analyze properties such as the the complexity of the solution and performance. Our results
successfully show the performance of spiking WANNs on several exemplar tasks.

1. Introduction. Neural networks are becoming exceedingly commonplace; however,
limitations of traditional hardware which neural networks run on are becoming apparent,
specifically in the low-power domain. For edge computing applications, such as drones,
satellites, and micro-robots, running larger neural networks is not feasible due to the energy
cost. Neuromorphic computing introduces a new paradigm for computing that is brain
inspired with an added benefit of low energy usage.

In many cases, neural networks tend to be overparameterized. Recently, a shift towards
pruning deep neural networks to make them sparser has become common. In addition,
NAS has also been effective in finding architectures that reduce complexity and increase
performance of neural networks [7, 22, 13, 5]. For spiking neural networks, Evolutionary
Optimization for Neuromorphic Systems (EONS) [17] is such an approach to generate spik-
ing neural networks. Recent work in searching for sparse topologies for various tasks in
classical neural networks showed that neural network weight training can be skipped, as a
universal parameter sharing approach is effective in evaluating the success of a potential
network topology. We use this approach to find topologies in spiking neural networks for
solving MNIST, swingup cartpole, bipedal walker, and Atari Atlantis problems. This work
provides evidence that spiking networks benefit from weight agnostic graph structures in
the same way scalar-weight networks do.

In Section 2, we provide a short background on neuromorphic computing, spiking net-
works, neural architecture methods, and Weight Agnostic Neural Networks. In Section 3,
we define the spiking WANN, followed by the results on various tasks in Section 4. Lastly,
Section 5 discusses considerations for future applications and work on spiking WANNs.

2. Background.

2.1. Neuromorphic Computing. Neuromorphic computing relies on event-based
spiking communication between neurons. Conversely, a typical artificial neural network
(ANN) relies on dense communication of continuous values. In order for ANNs to work
with this new paradigm, they must be converted into spiking neural networks (SNNs). The

∗University of Texas at Austin, abraranwar@utexas.edu
†Sandia National Laboratories, cmviney@sandia.gov
‡Sandia National Laboratories, wmsever@sandia.gov
§Sandia National Laboratories, smusuva@sandia.gov
¶Sandia National Laboratories, sgcardw@sandia.gov



4 Evolving Spiking Circuit Motifs

main motivation motivation for this difference is the promise of energy-efficient compute
evidenced by biological systems. Hence SNNs try to replicate this by communicating in a
fashion loosely inspired by biological neurons. We can define a spiking neuron computation
by a threshold activation function. Although a binary threshold ANN is not strictly an
SNN as it does not include the temporal domain, since it is compatible with neuromorphic
hardware, it is referred to as such. Severa et al. [18] noted that converting ANNs to SNNs
for neuromorphic computing is a non-trivial process, thus they iteratively sharpen various
activation functions to be binary. We show that evolved weight agnostic neural networks
with binary activation functions perform well and should be suitable to be transferred onto
neuromorphic hardware.

2.2. Lottery Ticket Hypothesis and Network Pruning. Network pruning focuses
on removing connections to create sparse networks that have a smaller number of connections
and weights. Pruning typically requires prior training, and then reducing the number of
weights [2]. The lottery ticket hypothesis solves the difficult problem of training sparse
networks. It states that a randomly initialized neural network has a sparse subnetwork that
performs just as well, if not better than its dense counterpart [8]. Building on this finding,
it was discovered that these pruned networks perform better than chance with randomly
initialized weights [21], further supporting the idea that the network topology influences
performance.

2.3. Neural Architecture Search. In contrast to pruning methods, the goal of neu-
ral architecture search (NAS) is to learn a network topology that can achieve good per-
formance on certain tasks, while sometimes ensuring a lower number of parameters. Zoph
and Le’s [22] pioneering work in NAS showed the intense computational resources needed
to generate accurate neural networks due to the large search spaces. Most NAS approaches
are split into three separate components: the search space, the search algorithm, and the
evaluation strategy [7]. The search space consists of a set of operations such as convolutions
or pooling layers and how these operators can be appended to form network topologies.
The search algorithm is how NAS methods selects candidates from a population of network
architectures and how they optimize these candidates. The evaluation strategy is where the
performance of the models are evaluated, either by actually running the network or using
some other metrics to estimate performance.

Typically, during the evaluation stage, if the algorithm needs to evaluate a test set, the
network to first undergo training. This makes the evaluation strategy the most expensive
part of the operation. Parameter sharing is one approach used to gain a speed up [15],
where child models share parameters with their parent. Brock et al. [3] uses a HyperNet
[10] to generate weights based on the encoding of the network architecture parameters.
Weight agnostic neural networks (WANNs) [9] take an approach inspired by evolutionary
methods to evolve neural network topologies, focusing on individual nodes rather than a set
of operations.

2.4. Weight Agnostic Neural Networks. Weight agnostic neural networks are in-
spired by the fact precocial species can accomplish several tasks at birth, such as duck
hatchlings being able to swim and eat [20]. WANNs follow an iterative topology search
algorithm inspired by the NEAT evolutionary search method [19]. In most architecture
search approaches, each generated topology requires individual weight training, which tends
to be the most expensive portion of the algorithm. WANNs show that the network topology
is important by enforcing weight-sharing across the whole network. Rather evaluating a
network by its performance on a test set after training, WANNs evaluate on a set of shared
weight values.



A. Anwar, C.M. Vineyard, W.M. Severa, S. Musuvathy, and S. Cardwell 5

Fig. 2.1: Visualization of topology search used to evolove WANNs. Sourced from WANN
paper [9]

To detail the approach in Figure 2.1, the algorithm goes as follows:

1. A population of various network topologies are generated.
2. For reinforcement learning/control tasks, the network runs through several rollouts,

each using a different shared weight value. For classification, it simply evaluates
the training set using the various shared weight values.

3. The networks are ranked in regards to their average performance and the number
of connections as a loose estimate of model complexity.

4. The top networks reproduce by adding or mutating connections and activation
functions.

The ranking process uses the crowding distance metric from Non-Dominated Sorting
Genetic Algorithm II (NSGA-II) [6], an evolutionary approach to multi-objective optimiza-
tion. Two objectives are optimized over: the mean fitness across each of the iterations and
an alternating objective of max fitness and the number of connections. The number of con-
nections is minimized 80% of the time while the max fitness is maximized 20% of the time.
This is to ensure that the network is able to grow in complexity if it leads to increased per-
formance. The best performing network is chosen as the final network; however, there does
exist a Pareto frontier of individual networks between network complexity and performance.

The mutation process involves adding new connections with random activation func-
tions, changing existing activation functions, or adding a connection between two existing
activation functions. The set of available activation functions are linear, step (binary/thresh-
old), sin, cosine, Gaussian, tanh, sigmoid, inverse, absolute value, and ReLU. Though Gaier
and Ha admit that they did not experiment much on the number of activation functions,
they speculated that the variety of activation functions allowed for decent performance from
the WANNs; however, as we will see, simply two activation functions are effective.



6 Evolving Spiking Circuit Motifs

3. Spiking WANNs. The overall approach to generating Spiking WANNs is the same
as the search in Figure 2.1. The evaluation step of the search is highly paralellizable and
is asynchronously evaluated across hundreds of processes. A reduced set of activation func-
tions are used, namely the threshold and linear activation functions. Threshold activation
functions themselves can easily be transferred onto neuromorphic hardware; however when
combined with a linear activation function, they mimic additive dendritic trees and can be
approximated by leaky integrate-and-fire neurons with delays. We recognize that the inputs
and outputs of our network may not be fully spiking; however, this can be overcome using
approximating networks and/or expanding codings.

Fig. 4.1: The three tasks run are the swingup cartpole task [4] (left), the bipedal walker
task [4] (center), and MNIST classification [12] (right)

4. Expiremental Results.

4.1. Tasks. We evaluated primarily four tasks. The first was a cartpole swingup task
[4]. The cartpole task is a classic continuous control problem where a pole starting in an
upright position must be balanced. The swingup version of this task starts in a resting
position with the pole hanging down and needs to be swung upright and balanced, and
unlike its simpler counterpart, cannot be solved using a linear controller. The input is angle
of the pole, sines/cosines of the angle, and the x coordinate. The expected output is the
force of ±1.

The second task was the BipedalWalker-v2 task for OpenAI Gym [4]. The goal of the
task is have a bipedal agent navigate across randomly generated terrain. A positive reward
is awarded for distance, while a negative reward for motor torque is given to ensure efficient
motions are made. The input is the state of the agent, consisting of the various speeds and
positions of different joints and ten LiDAR measurements. Overall, the input consists of 24
dimensions.

The third task was MNIST digit classification [12]. Although for most computer vision
tasks, MNIST is low in dimensionality, due to evolutionary approaches requiring making
connections at random, convergence can take a long time. Standard MNIST is 28x28, which
was reduced to 16x16 to reduce the dimensions.

The fourth task is the Atari Atlantis task, one of the many well-known games in the re-
inforcement learning community. These games became a prominent RL benchmark starting
in 2013 when Mnih et al. [14] published their seminal work on DQN approaches surpassing
human performance.

4.2. Comparison to WANNs. Experiments were run on each task using the same
parameters from the WANN paper, as seen in Table 4.1, to ensure fair comparisons between
them.

The results in Table 4.2 use the reward metric averaged over 100 rollouts for the relevant
control tasks along with their standard deviations for the best evolved network topology.



A. Anwar, C.M. Vineyard, W.M. Severa, S. Musuvathy, and S. Cardwell 7

Table 4.1: Parameters used for each task

Task # of Generations Population Size
Swingup Cartpole 1024 192
Bipedal Walker 2048 480
MNIST 4096 960

Table 4.2: Results for the various tasks.

WANN
Tuned Shared Weight Tuned Weights # of Connections

Swingup Cartpole 723 ± 16 932 ± 6 62
Bipedal Walker 261 ± 58 322 ± 7 338
MNIST 91.9% 94.2% 1228

Spiking WANN
Tuned Shared Weight Tuned Weights # of Connections

Swingup Cartpole 745 ± 11 912 ± 5 56
Bipedal Walker 290 ± 22 281 ± 31 210
MNIST 87.7% 88.2% 576

For MNIST classification, the accuracy is given on the test set. The tuned shared weight
category is the best shared weight value for the evolved network topology. The tuned
weights is when the network’s weights are individually trained using a population-based
REINFORCE algorithm. The tuned shared weights results are comparable to the original
WANN, but there is a degradation in performance when converting into the spiking-like
WANN. Other ANN to SNN conversion methods have also shown performance degradation
during the switch to threshold activation functions [18].

Interestingly, the tuned shared weights for the spiking WANNs have generally higher
performance than the WANN, but the finetuned weights perform worse. This can potentially
be attributed to fewer number of weights to finetune, as we see spiking WANNs consistently
generate smaller networks.

4.3. Classification. With good results on reinforcement learning tasks, Gaier and Ha
explored the capability of WANNs in MNIST classification. They state that classification is
unforgiving, as the algorithm is either right or wrong; there is no possibility of recovery as
there is in an episode in RL tasks. Table 4.2 shows the performance to be worse across the
board for the classification task. Again, this might be related to the significantly smaller
sized network generated by the spiking WANN.

4.4. Multi-Objective Optimization. Although all results in Table 4.2 show the
best individual, there exists a set of Pareto-optimal solutions since it’s a multi-objective
optimization problem. Figure 4.2 shows all individuals over the evolutionary process. We
can see a Pareto frontier develop on the right hand side of the graph, as we are minimizing
the number of connections and maximizing the mean fitness. As generations increase, we see
the number of connections are increasing, which is easily noticable by the gradient towards
red. The charts only plot the mean fitness and the number of connections; however, the
algorithm does an alternating objective optimization, where 20% of the time, the number
of connections objective is swapped out with a maximization of peak fitness. This is to
encourage growth in the number of connections, as well as performance.



8 Evolving Spiking Circuit Motifs

Fig. 4.2: Fitnesses of individuals across multiple generations. The color map is from yellow
to red, where the more red a point is, the later generation it comes from

Table 4.3: Results for Atari Atlantis task. Average Human and Random Agents results
sourced from [1]. DQN and HyperNEAT results sourced from [16].

Game Spiking WANN Average Human Random Agent DQN HyperNEAT
Atlantis 51180.0 29028.1 12850.0 76108.0 61260.0

The color gradient for the cartpole swingup task looks odd due to the lack of a gradi-
ent. This is because the cartpole task reached its objective significantly earlier, as seen in
Figure 4.3. We see a clear correlation between the number of connections and the fitness
values. This is further justification on why the agent is encouraged to ignore the number of
connections a certain percentage of the time.

Fig. 4.3: Peak fitness and number of connections for the best individual in each generation.
The red peak fitness lines’ score is on the left while the number of connections is blue and
on the right hand side.

4.5. Atari. Testing on the Atari game, Atlantis, we were able to see that, even without
considerable extensions, WANNs are capable of achieving DQN-like performance at the
fraction of the computational cost. Due to the high dimensionality of the frames, the input
was fed through a ResNet trained on ImageNet, whose final layer was cut off and fed in as



A. Anwar, C.M. Vineyard, W.M. Severa, S. Musuvathy, and S. Cardwell 9

Fig. 4.4: Network topologies of the top individuals for the cartpole swingup task (left) and
the bipedal walker task (right).

the input to the WANN. This method would allow the spiking WANN to converge faster
from the smaller input space.

The results, as seen in Table 4.3, shows the reward given for the task across various
agents. The longer the agent is able to play, the performance increases. The Spiking
WANN results are comparable to a DQN, as well as HyperNEAT from Hauskenect et al. [11].
HyperNEAT is a neuroevolution method which evolves an artificial neural network topology
using compositional pattern producing networks, allowing for it to efficiently handle large
input sizes. The spiking WANN score shows a slight loss in performance compared to the
other two methods, but clearly beats a random agent and the average human. The spiking
WANN network for this task is using a shared fixed weight rather than finetuned weights due
to time constraints. A slight performance boost should occur if the weights are individually
trained, as seen in the previous tasks. In addition, the performance of the network is after
only 64 generations, where increased generations are likely to increase the performance.

5. Conclusion. We hope to map these, or similar networks, to physical neuromorphic
hardware. Again, some inputs and outputs may not be fully spiking, such as the softmax
operation used for classification tasks. Methods around this will be useful to explore. In
addition, the complexity metric used was the number of connections. This is meant to be a
loose approximation of energy usage, but different target architectures perform differently
with different network topologies. Exploring energy-based constraints by changing the com-
plexity metric to be true to the target platform would allow for neural network-hardware
co-design. In addition, exploring the use of WANNs on a broader set of classification tasks
and reinforcement learning tasks would allow us to evaluate its capabilities. It may be
worthwhile to investigate changing the parameters, as these spiking-like networks have far
fewer activation functions available.

Whetstone refines the activation functions of a typical deep neural network to become
threshold activation functions, which can then be used on neuromorphic hardware. Lever-
aging the representational capabilities of a Whetstone network with a spiking WANN may
increase performance on datasets with large input sizes.

There also exists a potential for noise resilience. The evolutionary process for developing
the network topology ideally generates networks robust to noise, potentially in the input



10 Evolving Spiking Circuit Motifs

space or in the synaptic weights. Future exploration of this domain would make it an ideal
candidate for generating networks on neuromorphic hardware where the weights are noisy.
Spiking WANNs have been shown to perform well on a variety of tasks. Once a spiking
WANN has been implemented onto neuromorphic hardware, we hope to observe significant
power savings and reduced energy consumption compared to its traditional counterparts.

6. Acknowledgment. This work was supported by DOE NA-22 funding at Sandia
National Laboratories.

REFERENCES

[1] A. P. Badia, B. Piot, S. Kapturowski, P. Sprechmann, A. Vitvitskyi, D. Guo, and C. Blundell,
Agent57: Outperforming the atari human benchmark, 2020.

[2] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag, What is the state of neural network
pruning?, in Proceedings of Machine Learning and Systems 2020, 2020, pp. 129–146.

[3] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, SMASH: one-shot model architecture search
through hypernetworks, CoRR, abs/1708.05344 (2017).

[4] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba,
Openai gym, CoRR, abs/1606.01540 (2016).

[5] H. Cai, L. Zhu, and S. Han, Proxylessnas: Direct neural architecture search on target task and
hardware, CoRR, abs/1812.00332 (2018).

[6] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective genetic algo-
rithm: Nsga-ii, IEEE transactions on evolutionary computation, 6 (2002), pp. 182–197.

[7] T. Elsken, J. H. Metzen, and F. Hutter, Neural architecture search: A survey, 2018.
[8] J. Frankle and M. Carbin, The lottery ticket hypothesis: Training pruned neural networks, CoRR,

abs/1803.03635 (2018).
[9] A. Gaier and D. Ha, Weight agnostic neural networks, (2019).

[10] D. Ha, A. M. Dai, and Q. V. Le, Hypernetworks, CoRR, abs/1609.09106 (2016).
[11] M. Hausknecht, J. Lehman, R. Miikkulainen, and P. Stone, A neuroevolution approach to general

atari game playing, IEEE Transactions on Computational Intelligence and AI in Games, 6 (2014),
pp. 355–366.

[12] Y. LeCun and C. Cortes, MNIST handwritten digit database, (2010).
[13] H. Liu, K. Simonyan, and Y. Yang, DARTS: differentiable architecture search, CoRR,

abs/1806.09055 (2018).
[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A.

Riedmiller, Playing atari with deep reinforcement learning, CoRR, abs/1312.5602 (2013).
[15] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, Efficient neural architecture search via

parameter sharing, 2018.
[16] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, Evolution strategies as a scalable alter-

native to reinforcement learning, 2017.
[17] C. D. Schuman, J. P. Mitchell, R. M. Patton, T. E. Potok, and J. S. Plank, Evolutionary

optimization for neuromorphic systems, in Proceedings of the Neuro-Inspired Computational El-
ements Workshop, NICE ’20, New York, NY, USA, 2020, Association for Computing Machinery.

[18] W. Severa, C. M. Vineyard, R. Dellana, S. J. Verzi, and J. B. Aimone, Training deep neural
networks for binary communication with the whetstone method, Nature Machine Intelligence, 1
(2019), pp. 86–94.

[19] K. O. Stanley and R. Miikkulainen, Evolving neural networks through augmenting topologies, Evo-
lutionary Computation, 10 (2002), pp. 99–127.

[20] J. M. Starck and R. E. Ricklefs, Patterns of development: the altricial-precocial spectrum, Oxford
Ornithology Series, 8 (1998), pp. 3–30.

[21] H. Zhou, J. Lan, R. Liu, and J. Yosinski, Deconstructing lottery tickets: Zeros, signs, and the
supermask, in Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds., Curran Associates, Inc., 2019,
pp. 3597–3607.

[22] B. Zoph and Q. V. Le, Neural architecture search with reinforcement learning, CoRR, abs/1611.01578
(2016).


