
Detecting Muscle Cocontraction Through Sliding Window Gaussian Processes

Abrar Anwar
aa76875

University of Texas at Austin
abraranwar123@gmail.com

Abstract

Muscle cocontraction has always used electromyo-
graphic data to detected in muscles. Previous works have
given multiple intuitions on when cocontraction occurs. The
use of a sliding window to create a collection of overlap-
ping Gaussian processes are proposed, where the similar-
ity/differences in the data are represented by nearby kernel
hyperparameter values. Given a dataset of motion capture
data of a subject doing a variety of traces, this approach is
then analyzed and shown to be an effective means of detect-
ing muscle cocontraction in a human elbow joint.

1. Introduction

Muscle cocontraction is defined as the simultaneous con-
traction of two groups of muscles (agonist and antagonist
muscles) around a joint in order to stabilize one’s limbs.
The detection of muscle cocontraction is typically discov-
ered through electromyographic (EMG) data by attaching
surface electrodes to subjects who then perform tasks. This
motivates the creation of an alternative approach for de-
tecting cocontraction. A collection of Gaussian processes
trained on a keypoints in a dataset of human joint poses over
multiple time intervals is explored as an approach to detect
potential muscle cocontraction.

1.1. Muscle Cocontraction

Muscle cocontraction is typically seen as inefficient [2];
however, one belief is that cocontraction can be optimal
in uncertain (non-deterministic) environments [4]. To test
their predictive gait simulation model for it, a swing-up
problem was simulated, where the arm moved from a down-
wards to an upwards position with the goal of optimizing
energy usage. Their simulated model minimized muscle
activation to make trajectory optimizations of human move-
ments more accurate.

In an experiment to detect cocontraction during arm
movement accuracy tests, it has been observed that there

exists an inverse relationship between target size and co-
contraction in the arm when attempting to point towards a
target [1]. Furthermore, it has also been seen that muscle co-
contraction is related to movement velocity [9]. It has also
been seen in some muscle groups that muscle cocontraction
occurred during fast movements for young subjects, while
it was was more frequent during the deceleration phase for
elderly subjects [3]. While also investigating human arm
impedance effects against a robot arm, [6] concluded with
statistically significant results that muscle cocontraction in-
duces an anisotropic change of arm stiffness, which means
muscle cocontraction is related to arm stiffness across spe-
cific axes.

Previous research allows me to hypothesize that Gaus-
sian processes fit on specific coordinates may be able to de-
tect muscle cocontraction, as this model could potentially
encode changes in velocity and direction.

1.2. Gaussian Processes

A Gaussian process (GP) is a distribution over an infi-
nite number of possible functions. GPs take an input x and
predict some output y.

y = f(x) + ε (1)

where ε is Gaussian distributed noise. We will say the Gaus-
sian process is:

f(x) ∼ GP (m(x), k(x, x′)) (2)

wherem(x) is a mean function, which is usually set to zero,
and the latter is the covariance function. A GP is a nonpara-
metric prior over functions which are given by the mean
and covariance functions. The covariance function used in
this paper is the squared-exponential covariance function
(3), also known as the radial basis function (RBF). The ker-
nel has three hyperparameters σf , σn and `. σf refers to
the signal variance, while σn is the noise variance. ` is the
length-scale that defines the RBF function.

k(x, x′) = σ2
fexp(

1

2`2
(x− x′)2) + σ2

nδ (3)

1

Given a data matrix D, we can build a covariance matrix
Kij = k(xi, xj) where xi, xj ∈ D. With this covariance
matrix, we can build a GP posterior for a test input X∗,
training inputs/outputs X, f , and an estimated output f∗ :

p(f∗|X∗, X, f) = N (f |µ,Σ) (4)

where Σ = K∗∗ −KT
∗ ∗K−1K∗.

Algorithm 1 Gaussian Process Fit/Predict
1: Input: Training input X , training output y, covariance

function k(x, x′), noise level σ2
n, and test input X∗

2: L = cholesky(K + σ2
nI)

3: α = LT \ (L \ y))
4: µ = KT

∗ α
5: v = L \K∗
6: V ar(µ) = K∗∗ − vT v
7: log p(y|X) = −1

2
yTα−

∑
i log Lii − n

2 log2π

8: µ is the mean of the prediction, V ar(µ) is the variance
of the prediction, and log p(y|X) is the marginal log
likelihood

The common algorithm for calculating GPs is seen in
Algorithm 11 [7]. The algorithm shows to be quite sim-
ple. A Cholesky decomposition of the covariance K gives
us a lower triangular matrix such that LLT = K. This
is meant to handle the case of matrix inversion used in the
equation for Σ above. A Cholesky decomposition is faster
and more numerically stable than matrix inversion. An ad-
ditional bonus of using Cholesky is the simplicity to calcu-
late the log determinant, as seen in (5), which is required as
the second term in the marginal log likelihood. Cholesky
decomposition is also where GPs main issue arises: matrix
inversion is O(n3); however, this will not be an issue in
our small dataset. In addition, we add the noise parameter
σ2
n to the observations in order to turn a potentially singular

matrix to be nonsingular and tractable [5].

log|A| = 2

n∑
i=1

logLii (5)

Now that we have an algorithm for calculating GPs, the
next step is to optimize the hyperparameters of the GP; in
our case it’s (σn, σf , `). This is done by minimizing the
marginal log likelihood function.

An assumption a GP makes is that the similarity of the
output of a function increases as the similarity between two
solutions increases [8]. This implies a kernel function can
encode the similarity between the two solutions using its

1I initially implemented this algorithm, but once we were allowed to
use scki-kit learn, it has more stability than the usual algorithm used for
GPs, thus provides better results

Figure 1. The 570th frame of subject AG’s first trace overlayed on
a skeleton structure (inverted)

hyperparameters. Through this reasoning, I believe a slid-
ing window approach of a collection of multiple GPs should
be able to show where muscle cocontraction is occurring.

2. Method
2.1. Dataset

The given dataset is of 3D keypoints generated through a
subject wearing a motion capture suit and performing mul-
tiple tracing tasks. The motion capture suit gathers 50 key-
points on a subject as seen in Figure 2 located on several
joints on the human body. Twelve subjects repeat a spe-
cific trace five times. Each trace consists of 1030 frames,
sampled at a rate of approximately .011 seconds per frame;
however, there are some skips of varying times between
frames. This causes drift between traces where times don’t
match consistently. This causes a drift over the trace, where
the end goal is as much as .15 seconds off. As such, the
input X for the Gaussian process will be the time, not the
frame number. If we look at Figure 1, we can see a skele-
ton frame based on the trace data. It becomes apparent that
at multiple times throughout the trace some points are ob-
structed thus are empty points in the data. Also, the image
is inverted. It appears as though the left arm is tracing, but
it is actually the right arm.

2.2. Data Selection

Of the data provided, unique markers need to be chosen
to do analysis with. Subject AG was chosen, who does a
square trace. Marker 8 was chosen as the marker to ana-
lyze, as it is the right elbow, so it should be expected to
detect muscle cocontraction since the right arm performs
the trace. Ideally it will be seen during the upward motion
as mentioned in [4]. In Figure 3, the trajectories of three
of the five available traces for marker 8 can be seen in 3D.

2

Figure 2. Example of the motion capture data provided by Dr. Bal-
lard

Figure 3. 3D trajectories of marker 8 of subject AG

Overall, 6.25% of the data is sampled to fit the GP, which
comes to be a satisfactory number that still maintains speed
and accuracy.

2.3. Global Kernel vs Sliding Window

A typical Gaussian process would use a single kernel
function to represent the entire time series. A global ker-
nel is decent for most cases, and appears to have a competi-
tive sum of squared residuals compared to having more win-
dows represent the data, as seen in Table 1. The windows
in the table refer to how many windows the time were split
up into using even numbers of sliding window instances for
the dataset. The training was on four of the five tests, and
then tested on the other one to calculate the residual error.
Although the global kernel cannot tell us much about mus-
cle cocontraction through its single set of hyperparameters,

Table 1. Residuals for multiple windows on marker 8 x
Windows Sum of Squared Residuals
1 71.2489
2 70.0175
4 69.7980
7 74.3624
10 69.2276
16 66.9623
25 69.5048

it’s able to compete in modelling human motion data to a
set of many kernels. The lowest residual error is relatively
significant at 16 windows, which will be discussed later.

2.4. 1D vs 3D Coordinate

The Gaussian process can predict either one coordinate,
namely the x-coordinate of marker 8, or predict all of the
coordinates of a given marker at once using the same ker-
nel. A potential advantage in using 3D with a collection
of overlapping kernels is the potential anisotropic nature of
muscle cocontraction [6] could be detected in the 3D case.

3. Results

3.1. Global Fitting

A sample fit of a GP on the data for marker 8 can be seen
on Figure 4 and 5. The shaded areas represent a 95% con-
fidence interval from the mean, which is the colored line.
Having a single kernel function represent a single dimen-
sion, the standard deviations are able to represent most of
the training data on the interval. The 3D global kernel is
unable to represent the outliers in the case of the orange
line in the middle, as we see some of the training data is left
behind.

3

Figure 5. Global kernel used for the 3D marker 8 (xyz)

3.2. Sliding Window Fitting

A sliding window in the 1D and 3D cases provide in-
teresting results when looking at a qualitative visualization
on what encapsulates the data the best. Figure 6 shows the
sliding window in the case of marker 8. For any given point
in time, there exists multiple GPs that can give an output.
The average mean and standard deviation is represented in
the visualization. Due to this, you can see there are some
discontinuities, but it should not be much of a problem. The
fit is good using a temporal window size of 1 seconds with
a delta of .1 seconds. This means any given time point is
fit with 20 different kernel functions. The average of these
across multiple scales give us good predictions. As the delta
is increased, it does not do much other than make the func-
tion smoother, as seen in Figure 7. The additional smooth-
ness will cause issues when analyzing the change in hyper-
parameters, so it would be preferable to choose a slightly
coarse approximation.

In the 3D case, the same as above applies. In Figure
8, we can see that the sliding window fits are significantly
better than the use of a global kernel in both the 1D and
3D cases. This is important because in some motions, hu-
mans start off with strong cocontraction, but as time goes
on, variance begins to show and muscle cocontraction de-
creases [1]. Due to this, the use of a sliding window has ad-
vantages for modeling human motion as it can better model
that variance compared to a global kernel.

3.3. Hyperparameter Comparison for Muscle Co-
contraction Detection

In the 1D case, Figure 9 and 10 shows the 3 hyperparam-
eters for a temporal window size of 1 with a delta of .1 and
.01. As seen previously during the mean prediction, the data
is smoother with a smaller delta. The red line represents
one of the trajectories in the dataset (the prediction was

Figure 6. Local kernels with a window size of 1 and a delta of .1
for 1D data

Figure 7. Local kernels with a window size of 1 and a delta of .01
for 1D data

Figure 8. Local kernels with a window size of 1 and a delta of .1
for 3D data

not placed in there as it looks slightly discontinuous, but
the analysis will end up being the same). We can tell dur-
ing changes in motion, the sigma l hyperparameter changes.
When the motion of the x axis changes, a slight bump is vis-

4

Table 2. Time intervals where hyperparameters begin to shift for
the 3D case

Approximate Time Close Hyperparameters
4-6 sigma f, sigma l
7-10 sigma n
11-12.5 sigma l

ible during the motion. These times roughly match up with
those in Table 2, which describe the 3D data’s hyperparam-
eters. However, there does exist some variations that don’t
seem to line up with any changes in our data, namely after
time 12.5, where sigma f is slowly increasing. These vari-
ations in the kernel function could be used to detect muscle
cocontraction.

More interestingly, in the 3D case, Figure 11 shows some
more interesting results. The shifts in the hyperparameters
for the 3D case are put in Table 2. During the time interval
of approximately 4 seconds, sigma f and sigma l’s values
cluster together to be higher, specifically during the decel-
eration period during the movement of making the shape,
which is in line with findings of previous works [3] (al-
though this is under the assumption it holds for the elbow
joint). Although it is impossible to tell whether true mus-
cle cocontraction is occurring as we do not have a ground
truth dataset, it definitely provides intuition on whether it is
occurring or not.

Figure 12 shows n sliding windows evenly split between
the data for marker 8along with their corresponding hyper-
parameters in Figure 132. These figures show the center of
each window rather than the mean of multiple kernels’ out-
puts. Due to this, there is more discontinuity in the graph,
but it should be fine. Furthermore, the hyperparameters are
split over windows rather than the average hyperparameters
at a given timeframe. This way it’s easier to see differences
between the windows. Irregularities in the hyperparameter
space are denoted by stars on Figure 12. It is evident that
lower amounts of windows to cover a time series has little
variation in the kernel hyperparameters. In this formulation
of the sliding window, the usage of 16 windows which has
the lowest squared residual error as seen back in Table 1,
as well as align with where I believe muscle cocontraction
is occurring. This also lines up with the 3D data’s approxi-
mate jumps in the hyperparameters as seen in Table 2.

4. Summary

This paper explored the usage of a collection of overlap-
ping Gaussian processes through sliding windows in order
to detect muscle cocontraction. Although there does not ex-
ist any ground truth data, the use of intuitions and findings

2These graphs looks as such as it was made before the TA provided the
rubric and stated how the data was meant to be presented. I believe these
still provide useful information for detecting muscle cocontraction

Figure 9. Hyperparameters for local kernels with a window size of
1 and a delta of .1 for marker 8 x

Figure 10. Hyperparameters for local kernels with a window size
of 1 and a delta of .1 for marker 8 x

from previous works in muscle cocontraction allows the hy-
perparameter space of a collection of GPs to be a plausible
method to detect cocontraction.

References
[1] P. L. Gribble, L. I. Mullin, N. Cothros, and A. Mattar. Role of

cocontraction in arm movement accuracy. Journal of Neuro-
physiology, 89(5):2396–2405, May 2003.

[2] N. Hogan. Impedance control: An approach to manipulation:
Part ii—implementation. 1985.

[3] Y. Iwamoto, M. Takahashi, and K. Shinkoda. Differences
of muscle co-contraction of the ankle joint between young
and elderly adults during dynamic postural control at different
speeds. Journal of Physiological Anthropology, 36(1), Aug.
2017.

[4] A. D. Koelewijn and A. J. [van den Bogert]. A solution
method for predictive simulations in a stochastic environment.
Journal of Biomechanics, page 109759, 2020.

5

Figure 11. Hyperparameters for local kernels with a window size
of 1 and a delta of .01 for 3D marker 8

[5] A. McHutchon and C. E. Rasmussen. Gaussian process train-
ing with input noise. In Proceedings of the 24th Interna-
tional Conference on Neural Information Processing Systems,
NIPS’11, page 1341–1349, Red Hook, NY, USA, 2011. Cur-
ran Associates Inc.

[6] H. Patel, G. O’Neill, and P. Artemiadis. On the effect of mus-
cular cocontraction on the 3-d human arm impedance. IEEE
Transactions on Biomedical Engineering, 61(10):2602–2608,
2014.

[7] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes
for Machine Learning (Adaptive Computation and Machine
Learning). The MIT Press, 2005.

[8] I. Roman, R. Santana, A. Mendiburu, and J. A. Lozano.
Evolving gaussian process kernels from elementary mathe-
matical expressions, 2019.

[9] M. Suzuki, D. M. Shiller, P. L. Gribble, and D. J. Ostry. Re-
lationship between cocontraction, movement kinematics and
phasic muscle activity in single-joint arm movement. Experi-
mental Brain Research, 140(2):171–181, July 2001.

6

Figure 12. Various local kernel window sizes split up for marker 8 x

7

Figure 13. Hyperparameters for various local kernels split up for marker8 x

8

