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Abstract

Convolutional neural networks (CNNs) have been successful in per-pixel pre-
diction tasks such as optical flow; however, it does have its flaws. Optical flow
can be viewed as a vector field, where there exists much ongoing research on
vector field reconstruction for the purpose of fluid simulation. We propose and
explore a method using a supervised architecture that attempts to predict the
Helmholtz-Hodge decomposition of a vector field, whose sum is the expected opti-
cal flow between two images. The code can be found at the following repository:
https://github.com/AbrarAnwar/DeepHHD.

1 Introduction

Flownet [4][8]] created a new approach to optical flow estimation using CNNs. Much of the research
in the past used variational approaches inspired from the Horn-Schunck [[6] and Lucas-Kanade [[14]
methods. Since then, a variety of methods using CNNs to estimate optical flow have popped up
[L3][12][L5], adding features such as unsupervised learning or using generative models.

In this paper, we introduce a method for optical flow estimation using the Helmholtz-Hodge decom-
position (HHD). We then discuss the results and compare it to other common approaches. Then we
discuss future options for continuing this research.

2 Background

2.1 Classical Optical Flow Estimation

Optical flow is the detection of the motion of pixels between two consecutive frames. Historically,
two differential methods for estimation of optical flow are the Lucas-Kanade and Horn-Schunck
methods [14] [6], developed in the 1980s. Numerous assumptions are typically made in an optical
flow model such as a brightness constancy constraint. The assumption typically is that a given pixel
moving across multiple frames, the frames will have the same brightness across those frames. This is
typically written as

I(z,y,t) = I(x + Az,y + Ay, t + At) (1)
In addition, it is assumed that the motion of a pixel between two consecutive images are small. These
constraints together develop the brightness constancy equation.
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The equation can be simplified in it’s shorthand form as
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I, and I, are the spatial derivatives, which are calculated through image gradient techniques such as
the Sobel operator. u and v is the optical flow which is desired. It is easy to see Equation 3]s a linear
equation and lies on a line. Thus, multiple values of u and v can represent a valid solution given it is
an undetermined problem.

The Horn-Schunck method assumes smoothness in the flow, thus tries to smooth the image iteratively
while using while solving a linear system. Modern approaches inspired by Lucas-Kanade’s approach
uses image pyramids, where multiple resolutions of the image are used to get information across
multiple scales.

2.2 Deep Learning Approaches to Optical Flow Estimation

Since the advent of deep learning, optical flow was a popular problem to solve. FlowNet [4] was
the first to use convolutional neural networks (CNNs) to learn and predict optical flow with striking
accuracy and speed in an end-to-end fashion. CNNs have shown great strengths in per-pixel prediction
in tasks such as segmentation, thus should also show strengths in optical flow. Continued work for a
direct end-to-end approach includes SpyNet [[17] which used a spatial pyramid network to handle
multiple scales and PWC-Net [18]] which uses warping and a cost volume layer to estimate optical
flow at various scales. One of the latest approaches is VCN [19], which doesn’t solve for optical
flow directly, but instead tries to treat the problem as a hypothesis selection problem for pixel
correspondences using a Siamese network. FlowNet and FlowNet2.0 happen to be the largest network
of all of these approaches, where FlowNetC has over 38M parameters and FlowNet2 having 162.49M
parameters. In comparison, PWC-Net has 8.75M and VCN has 6.20M parameters, while achieving
performance that exceeds that of the variants of FlowNet [7].

There exist several approaches beyond an end-to-end trainable network for optical flow. ProFlow
[L5] treats each frame as a model and learns online. It follows the assumption that a dataset to
train under is not sufficient to generalize for some test dataset, thus learns online. Each model per
frame is location dependent, thus ProFlow is able to predict in occluded locations. SelFlow [13] is
a semi-supervised method to learning optical flow that uses a photometric loss from unsupervised
methods (which use image warping to learn) and combines it with the addition of multiple forms of
synthetic occlusions to the data to improve performance. They conclude it is reasonable to not train
on a prelabeled dataset, as pretraining using a self-supervised model on unlabeled data shows good
performance.

FlowNet develops multiple architectures. The simplest one consists of a straight-forward, multi-layer
CNN architecture where the input is the two temporally consecutive images stacked. This method
would work but would also likely lack the ability to find a good minimum. FlowNetCorr is an upgrade
where each image is put into separate CNN processing streams where a smaller representation of the
image is generated. Next, a correlation layer’ performs multiplicative patch comparisons between
the two representations. This is done by convolving patches (not filters) from one feature map onto
the other. These are fed into a series of convolutional layers and are then refined through a series
of unpooling and deconvolutional layers to go from a coarse feature map to a finer, dense per-pixel
estimation. This correlation layer is the industry standard for state-of-the-art approaches to optical
flow estimation. PWC-Net and VCN also uses the same correlation layer as FlowNet. [18]] [19].

The loss used is endpoint error (EPE), which is the average Euclidean distance between the predicted
flow vectors for each pixel to each ground truth flow vector. This is a common loss function for deep
learning approaches for optical flow estimation problems, as well as the metric used to compare the
accuracy between different techniques. This loss function can be shown as:
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where u;j represents the ground truth flow flow vector of column pixel ¢ and row pixel j for an image
with a height of H and width of W. 1i,; is the predicted output of the neural network.

FlowNet 2.0 [8]] attempts to solve the multiple issues in its predecessor, namely the slowness and
the inability to handle small displacements of images. To handle this, they developed a complex,
stacked architecture of multiple FlowNets to handle large displacements and small displacements.
This stacked network decreased speed compared to the original FlowNet, but increased accuracy by



about 50%. Different variations of their stacked networks can increase speed heavily, however the
official FlowNet 2.0 architecture is slightly slower than it’s predecessor.

The main takeaway from Flownet’s approaches for the creation of our architecture is the use of a
correlation layer. A representation through a correlation layer provides more interesting information
for the network compared to simply appending two images together.
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Figure 1: HHD on a flow from the Sintel dataset

2.3 Vector Field Reconstruction

Optical flow fields are vector fields. Work on vector field reconstruction has existed for decades,
focusing on simulating fluids. DeepFlow [10] was the first generative network that reconstructed
fluid simulations from a set of reduced parameters. They used a novel stream function based loss
defined as:
Le(c) = [lue =V x G(0)|lx (5)
U, is the simulation sample from the training data built using parameters ¢ and G(c) is the network
output given parameters c. The parameters c are a combination of the x position of the source, the
source’s width, and the current time frame. Using this, they are able to stunningly recreate their
fluid simulations hundreds of times faster than analytical methods. The curl of the output of the
neural network is built to be the reconstruction target, and is thus guaranteed to be divergence free by
construction, thus can reconstruct incompressible flows reliably; however, it is better to use a direct
loss function if fluids are compressible. This approach simply removed the curl operator as seen in
Equation [¢]
La(e) = llue — G(e)|x (6)
This equation begins to resemble FlowNet’s EPE loss function. In order to handle icompressible
and compressible flows, the loss function that was most effective was a weighted combination of the
following.

Lg(c):)\1Hucfﬁc|‘1+)\2||VUC7V’Z},CH1 (7)
where @, = V X G(c). This augmentation uses gradient information to improve the vector field data,
as seen in the latter portion. This approach to reconstruct optical flow from an input parameter set c
will inspire our approach to reconstruct vector fields from the image data.

2.4 Helmholtz-Hodge Decomposition

The Helmholtz-Hodge Decomposition (HHD) decomposes an arbitrary vector field into rotation-free,
divergence-free, and harmonic vector fields [3]]. Given a vector field v, the decomposition is as such:

G=d+7+h (®)
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Figure 2: Network architecture visualized. The plus symbol after the correlation layer is meant to
show the concatenation of the first image to the correlation layer’s output before it’s fed into the
generators

Method MPI Sintel Train
FlowNetS 4.50
FlowNetC 4.31
FlowNet2.0 2.93
DeepFlow 3.31

Horn+Schunck 8.739
HHD + EPE 13.2615302
HHD Loss 13.1203958

Table 1: EPE Results for various approaches (EPEs for other methods come from [[13]])

d is rotation-free, 7 is divergence-free, and h is both divergence-free and rotation-free. By definition
of rotation-free and divergence free, we get the following equalities:

v )
v

HHD has been used in the past for a variety of applications, including limited uses for optical flow.
For example, the navigation of robots using 3D optical flow was calculated using HHD [16]. Kiristis
et. al [11]] used various vector field decomposition and variational regularization methods in order
calculate optical flow for fluorescence response of zebrafish microscopy image sequences. [S]] showed
that discrete HHD was effective at decomposing the motion fields of synthetic datasets.

There exists a variety of methods to calculate HHD, the two most popular being discrete HHD [[1]]
and natural HHD [3]]. Although their decompositions are both valid, the latter was chosen due to the
ease of access to their HHD solver. The natural HHD is calculated by separating the flows through

internal and external influences on the domain. d and 7 are calculated using their natural components

to represent the flows inside the domain. The last part, the natural harmonic ﬁ, is thus influenced by
the external boundary of the domain.

3 Architecture

The architecture implemented for DeepHHD, as seen in Figure [2] is that given two images, we
pass them through two image towers that learn a reduced representation of the images. This is then
followed by the correlation layer seen in FlowNet. This correlation layer produces a representation of
the two images together. An additional convolutional layer is used with the image representation of
the first image and then concatenated to the end of the output of the correlation layer. This output
is used when network branches off into three generators, each of which produces a vector field
representing its respective HHD component. An example of the training data output can be seen in

Figure[T]

The generator starts with a convolutional layer followed by a Resnet-like architecture consisting of
4 big blocks that are made up of a small blocks that consist of 4 repeated flat convolutional layers



with a Leaky ReLU activation. The big block ends with an additive skip connection and an upsample
to two times input size. This is meant to take the reduced representation and slowly upsample it by
order of two until it reaches the proper size (which takes 4 upscales to reach). Finally, after 4 repeated
big blocks, the network ends with a last convolutiopnal layer that brings the size of the input to the
proper size of a vector field. This generator was inspired by DeepFluids’ generator network as it was
shown to be reliable for reconstructing vector fields.

The goal is for each generator to learn how to reconstruct simpler representations of the vector fields
needed to construct the final optical flow. The loss function used ensures the reconstruction of the
HHD components are accurate:

Ligrrp = |lr = 7| + |ld — dl| + ||h — ]| (10)

An additional loss function that could be used is as follows:

Leombineda = Luap + LEPE (11)

Equation[TT|could be useful in reconstructing the vector field while also recreating the decompositions
accurately. In addition, another potential loss function could take advantage of the equalities defined
in Equation[9]

Leg=1|IV-d=V -v|[|+]||Vx7#—=V x| (12)

This loss could be interesting, as we would start estimating d and 7 without having to compute the
expensive decomposition for the training data beforehand.

4 Results and Discussion

Due to limitations in training hardware, training and testing were done only on the MPI Sintel
Dataset’s training set. The Sintel dataset is a popular synthetically generated optical flow dataset
created from a CGI movie. Table [I|shows the average EPEs on the dataset using various methods. It
appears that the results of our approach on the dataset are pretty poor compared even to the baseline
Horn+Schunck method. Interestingly, the use of HHD loss alone seems to slightly have an edge
outperforming the HHD+EPE loss. A major limitation of this project was the lack of GPU capabilities,
as use of minibatch was limited due to a batch size of one taking up an entire GPU’s memory. Due to
this, a single test of new iterations of the architecture would take an entire day, quickly eating up all
the allotted time.

Although the results were poor, they also show promise, as the inspection of the distribution of the
resultant EPEs in Figure |3[show that it is incredibly high for some values, pushing the average EPE
towards the higher end. I believe these high outliers are caused by the lack of per-pixel prediction
of flow across multiple scales. The network as it is now is able to handle coarse predictions, which
welcomes small amounts of motion. Numerous works in the past have handled multiple scales of
motion using image pyramids [14], developing pyramid networks [[L7], as well as FlowNet’s approach
of a refinement process for the coarse output of a neural network.

In addition, most state-of-the-art optical flow networks are pretrained on some separate, synthetically
generated dataset. FlowNet uses a Flying Chairs dataset developed from randomly generated chairs on
random backgrounds. CNNs require a lot of data in order to be able to generalize, and this pretraining
process augments the network. Flying Chairs with over 22k image pairs with their associated optical
flows, totaling to over 30 gigabytes of data. The dataset was too large to run on my machine due to
space and internet constraints.

5 Conclusion and Future Work

In the future, work on computing motions at varying scales is needed, and could take inspiration from
new developments in variational methods such as normalizing flows and variational autoencoders.
These methods might be able to handle the multi-scale issue along with predicting what occurs when
the image is occluded (which the Sintel datasets counts as unmatched pixels). These unmatched
portions of the test dataset tend to have incredibly high rates of error compared to matched portions
of the images. In addition, normalizing flow’s ability for accurate density estimation may provide



Distribution of EPE Errors on Sintel Training Dataset
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Figure 3: EPE distribution using HHD loss

useful for match density estimation which has been shown as effective for estimating optical flow and
stereo matching by learning pixel correspondences [20].

In conclusion, a network for reconstructing the HHD components of an optical flow estimate was
developed and tested. Although the results were not great, if a proper implementation for the
generative portion of the network were to be created, my intuition is that a network estimating the
simpler components of an optical flow would result in increased accuracy than computing it all in one
go. Ideally, an upgrade to the generator will be low in the number of parameters, as all new research
in the field has been moving in that direction, especially since DeepHHD aims to reconstruct three
vector fields.

An interesting idea to continue this work would be to use convex optimization layers [2] as proposed
by Amos et al. This differentiable optimization layer allows for easy embedding of constraints into a
deep learning frameworks. A recent paper by Jiang et al. [9] used bi-level optimization to embed an
epipolar geometric constraint into a deep learning network in order to predict both an optical flow
estimate and an essential matrix estimate. They were able to get competitive results for optical flow
as well as significant results on essential matrix estimation. I believe that convex optimization layers
could be used to embed constraints given by the equalities in Equation [J]into the predicted outputs of
the network.
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