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Abstract

In this paper, we introduce a new concept to calibrate Reinforcement Learning (RL)
called “supervised attention” from human feedback which focuses on novel task
learning from human interaction on relevant features of the environment, which
we hypothesize will allow for better model calibration from limited training data.
We wanted to answer the following question: does model calibration improve the
performance of an agent in reward-sparse environments given language feedback?
We show that language helps the model predict actions with more confidence. We
tested many methods for implementing this concept and settled on incorporating
language feedback via a template matching scheme. Using deep learning methods,
we translate human linguistic narration to a saliency map over the perceptual field.
This saliency map is used to inform a deep-reinforcement learning system where
features in the visual observation are most important relative to its position in the
environment and optimize task learning. We establish a baseline model using deep
TAMER with a replay buffer and test our framework on Montezuma’s Revenge,
the most difficult game in the Atari Arcade suite. Our approach uses feedback-
based rewards to calibrate the uncertainty estimates for each action, and uses
this estimate to improve exploration. Our results show that calibrated uncertainty
estimates allows the agent to improve significantly over the other agents when
using language-based feedback.

1 Introduction

Advances in machine learning have contributed to impressive progress in the development of rein-
forcement learning agents’ ability to produce robust policies that generalize across differing situations
seen and unseen during training [3, 12]. However, these methods typically only work under carefully
designed testing conditions or simulated environments where experts hand select features [1], reward
functions, and initial conditions [19]. This scheme works great under the assumption that an RL
expert is on hand to ensure the optimal training and testing of the intelligent agent occurs without
mishap. However, if we truly wish to develop general purpose agents on a wide scale for real world
tasks under the tutelage of a non-expert, a more sustainable model is needed to quickly and robustly
characterize novel tasks in unknown environments, utilizing information more intuitive to the average
person, rendering the intervention of expert trainers unnecessary.

In the quest to realize this ideal, various approaches have been employed to allow a human user to train
a RL agent through our natural forms of instruction and interaction, the most relevant to our project
being language. One of the first ground breaking approaches and the one we reference the most
throughout the remainder of this paper is TAMER [10] and its extension into deep neural architectures,
deep TAMER [23]. These are two methods for allowing a human to provide continuous evaluative
feedback on an agent’s performance. They demonstrate how scalar feedback can significantly decrease
learning time. While most other areas of research in the Artificial Intelligence (AI) domain might
require training episodes to the scale of thousands and hundred thousands, very rarely do we see a RL
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training scheme less than the order of millions (and that is being conservative). Deep TAMER also
addresses the credit assignment problem. By assigning each action sequence a window of relevancy
for each received feedback signal, they were able to discern which aspects of the current state made a
particular action a good or bad option. However, one must admit the scalar reward as feedback is
rudimentary and more tailored to the digital world than our own. We want to show that language
feedback is just as valuable if not more significant to shortening agent learning and improving the
calibration of a model.

Why do we think language is going to be so valuable in the RL domain? First, consider how humans
learn and teach each other new skills. When a person is providing feedback or demonstrating a task
for another person, they can describe what they are doing in natural language, providing context,
clarification, and/or explanations for their evaluations or actions. Therefore, this work focuses on
enabling intelligent agents to perform efficient and robust learning from feedback by leveraging
auxiliary natural language narration as context. We show that this contextual information allows
agents to intelligently disambiguate, generalize, and rapidly learn from human instruction a complex
task in a sparse reward environment, the Atari game Montezuma’s Revenge. We develop, implement,
and evaluate our new approach to using language to aid task learning. We were inspired by ideas
from language grounding, explanation for deep learning, and learning from rationales.

Our approach uses language narration as a supervisory signal that focuses learning on relevant features
of the environment, thereby allowing effective learning from limited training data and enhancing
model calibration. Our system pre-processes image inputs using language to focus agent’s perception
on task or environment relevant features. For instance, given Room 1 in Atari’s Montezuma’s
Revenge, the human trainer can specify local optimal behaviours with language given the agent’s
progress towards the goal (key). When the agent is at the top of the ladder, we do not want the agent
to immediately focus on moving left towards the key, as there is no viable path to reach the key’s
location from the starting position. Instead, a trainer might instruct the agent to move right, away
from its primary objective, but along an optimal trajectory for the given environment. By leveraging
prior work in video captioning [22, 21] and template matching, we construct a model and train it to
use language embeddings within the environment observation space. The human linguistic narration
is used to generate a saliency map over the perceptual field using a combination of methods described
in [9] and [7].

Finally, this saliency map is passed to the deep reinforcement learning system from deep TAMER
[23] with a replay buffer augmented to accept natural language feedback. We distinguish ourselves
from previous work by [4] and [9] by focusing on natural language as feedback as opposed to a
scalar-valued reward signal or set of instructions. Additionally, we model the uncertainty in the
language feedback with respect to its observation using model calibration techniques. Language is
incorporated solely as a supervised attention signal over the features of the high dimensional state
observation.

This work covers the development, implementation, and experimental evaluation of our novel
method for improving model calibration by augmenting agent learning with human feedback through
the exploitation of information gathered from linguistic narration. We evaluate our approach on
Montezuma’s Revenge, the most challenging game in the Atari Arcade Suite. We tested our agent
on Room 1 using a fixed reward function across all training and testing sessions. Overall, our
project dives into and investigates an entirely different use of language– evaluative narration of agent
performance. Our new method has the potential to significantly expand the field of RL and but also
draw attention to how far we still need to go before at-home personalized robot companions can
actually be realized.

2 Background and Related Works

2.1 Background

We make the common assumption that our learning task can be represented as a Markov Decision
Process specified by the tuple (S,A, T, γ,D,R). S and A are the sets of possible states and actions
respectively. T is a transition function, T : S × A× S → R, which gives the probability, given a
state and an action, of transitioning to another state on the next time step. γ, the discount factor,
exponentially decreases the value of a future reward. D is the distribution of start states. R is a
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reward function, R : S ×A× S → R, where the reward is a function of the most recent state, the
most recent action, and the next state st, at, and st+1.

Reinforcement learning algorithms [20] seek to learn policies (π : S → A) for an MDP that maximize
return from each state-action pair, where return =

∑t
t=0[γ

tR(st, at)]. Within reinforcement learning,
there are two general approaches to this problem. Policy-search algorithms fix the values of some set
of parameters, observe the mean return received for the fixed policy over some number of episodes,
and then use a rule to determine what parameter values to try next. The other reinforcement learning
approach models the expected return, or value, of a state or state-action pair when following a certain
policy. Usually, the action with the highest expected return is selected (though sometimes with
exploratory actions instead), and the agent updates the expected returns based on its experience. We
use the latter approach when formulating our problem.

2.2 Calibration

The two most common approaches to calibration are Platt scaling [15] and isotonic regression [14].
Calibration has recently been applied to problems in deep neural networks [8] and model-based
reinforcement learning [13]. In model-based reinforcement learning, [13] developed a general
calibration technique for reinforcement learning which probabilistically modeled the observations
to actions. They use the calibrated uncertainties to improve exploration using upper confidence
bounds (UCB). In this work, we use a similar approach to improve agent exploration using human
feedback-based rewards.

2.3 Saliency Maps

Deep learning systems are often treated as black boxes, where the inner workings of the systems
are esoteric and hard to interpret. This led to work in generating explanations that help interpret
the decisions made by deep networks such as CNNs [5] and RNNs [16]. Systems such as Grad-
CAM [17] and Caption-guided visual saliency [16] are able to analyze a network’s processing of a
particular example and generate a “heat map” showing which features of the input most influenced
the generated output. Caption-guided visual saliency takes a video captioning neural network and a
given input/output pair, and produces heat maps over the input frames denoting which parts most
influenced the computed output. EXPAND (EXPlanation AugmeNted feeDback) by [7] uses a human
in the loop RL framework to provide visual explanations from saliency maps and binary feedback.
They showed that the addition of state salient information boosts agent performance. Along this vein,
we used a technique called template matching in conjunction with the Gaussian perturbation over the
pixels to produce heat maps from state observations. Template matching is a technique that identifies
the parts on an image that match a predefined template. We generate these heat maps from natural
language feedback and use them to supervise the training of our model weights.

2.4 TAMER and Deep TAMER

In our work, we concentrate on two of the most popular frameworks for learning from human
feedback, TAMER [10], and Deep TAMER [23]. We augmented the Deep TAMER framework to use
linguistic information collected from human feedback to produce saliency maps.

The TAMER Framework is an approach to the Shaping Problem [2]. TAMER assumes human
reinforcement to be fully informative about the quality of an action given the current state. It uses
established supervised learning techniques to model a hypothetical human reinforcement function,
H : S ×A→ R, treating the scalar human reinforcement value as a label for a state-action sample.
Briefly, the TAMER algorithm operates in the following manner. First, the agent receives a scalar
reward from the human trainer for the previous time step. If the human reward is nonzero, then the
error is calculated as the difference between the human reward and model predicted reward, Ĥ(s, a).
The loss is then propagated backward, along with the previous feature vector, to update the model. In
the forward pass, when the agent takes a single step in the environment to reach a new state, it selects
the action with the largest predicted reward according to the model.

Deep TAMER, an extension of the TAMER framework, leverages the representational power of deep
neural networks in order to learn complex tasks in just a short amount of time with a human trainer.
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Figure 1: This figure depicts the templates we extracted from Room 1 of Montezuma’s Revenge.

We use this approach to implement our supervised attention model with human feedback instead of a
binary reward input from the human trainer.

3 Language Guided Template Matching

Our approach uses language narration to supervise the template matching saliency map generation.
We hypothesise that instead of allowing the model to have access to all image features for every step
in the training episode, thereby having to figure out on its own which features are the most important
predicting reward and which ones can be ignore through a series of trials and errors, calibration will
be greatly improved if we simply hand over the features of the image we think are most important.
Having a selection of the features is useful for efficiency but designing them by hand is not scalable –
therefore we use language. We test this by transferring the language information obtained from the
human trainer to the image observation and outputting a heat map. The saliency map is supposed to
help focus model weights on relevant features of the environment, thereby allowing more effective
learning and a more calibrated model. We follow the language template matching scheme outlined in
[9] with free form natural language feedback to generate a mask. We then apply a Gaussian filter
over the original image to perturb the pixels and combine this blurred observation to obtain the final
saliency map [6]. Applying Gaussian perturbations over irrelevant regions adds spatial uncertainty
and motivates the agent to focus more on the clear relevant regions. We experimented with other
perturbation methods, but found the Gaussian filter with blur radius of 3 worked the best for our
purposes.

3.1 Using Language to Produce Saliency Maps

A fundamental challenge in RL is given a reward for a particular sequence of states and actions,
ascertaining which features of the states and actions are most important for determining the reward.
Using language to describe why an agent’s actions were good or bad is valuable information. Our
approach allows a neural model to focus on relevant state features communicated via a saliency map
(aka heat map) highlighting the importance of image features through pixel weighting or masking.

We first implemented an algorithm that maps the language to the perception of the environment
using templates we created (See Figure 1). Formally, given a natural language feedback provided
from a synthetic language generator, we parse the utterance into separate word tokens. With these
tokens, we preform a search across the generated template for the Montezuma’s Revenge environment.
The templates are tightly bounded images of important obstacles and features of the environment,
including ladders, gates, the agent, the skull, and the key. We select the templates by matching word
tokens in the feedback language to the template name. Once all of the relevant generated templates are
gathered based off of the language feedback, we compute a mask over the observation features. The
mask leaves the important features in the observation space and masks out all others. We then apply
a Gaussian filter to the original image which consequently blurs pixel appearance. After applying
the mask to the now blurry observation, the resulting array contains the features with relevant object
information with unimportant features obscured (see Figure 2). In essence we generate heat maps
over the input frames denoting which objects most influenced the computed output. This heat map is
then passed as an input during training to deep RL model in a supervised setting, allowing the system
to use the language to improve learning from feedback.
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Figure 2: Saliency Map Generation. We produce heat maps for the model based on a pseudo random
interval to authentically simulate a human in the training loop. A Gaussian filter with blur radius of 3
is applied to the observation image. The resulting vector is added to the template mask. The final
saliency map is depicted in the far right image of the figure.

3.2 Template Matching in Atari

We use the cv2 library in Python to perform the template matching. Template matching is a method
for searching and finding the location of a template image in a larger image. The OpenCV library
comes with a built in that slides the template image over the input image and compares the template
and patch of input image under the template image. It returns a grayscale image, where each pixel
denotes how much the neighbours of that pixel match with the template. Once we have the result, we
can find the maximum/minimum value. However, this will not provide us will all the locations of an
object when multiple occurrences of the same template are found.

For our purposes, we implemented template matching with multiple objects. Consider Room 1 in
Montezuma’s Revenge. If the human trainer provides feedback such as “Climbing down the ladder
was a good action", we want to locate all of the ladders across the observation so the model can
interpret that ladders should be associated with climbing up and down actions. In this case, we used a
thresholding approach. If a pixel value is greater than the threshold value, it is assigned 1 else it is
assigned 0. In our case, the threshold is 1, meaning the pixel in the template is a direct match for the
pixel in the observation image. Next we compare a template against overlapped image regions. As
we slides through sections of the image, we compare the overlapped patches of size w × h against
the template and store the comparison results. We used the template matching normalized correlation
coefficient comparison method:

Î(x, y) =
∑
x′,y′

(T ′(x′, y′) · I ′(x+ x′, y + y′))

√∑
x′,y′

T ′(x′, y′)2 ·
∑
x′,y′

I ′(x+ x′, y + y′)2 (1)

where I denotes image, T template, Î result. After the function finishes the comparison, the best
matches are found as global maximums.

4 Deep TAMER + Feedback

Deep TAMER [23] extends TAMER [10] a LfD framework. A human observes an autonomous agent
trying to perform a task in a high-dimensional environment and provides scalar-valued feedback as
a means by which to shape agent behavior. Deep TAMER + Feedback enriches the Deep TAMER
observation space with natural language feedback, potentially enabling better sample efficiency and
training time.

4.1 Algorithm

We use the problem formulation proposed in [23] with a few modifications . Instead of a binary reward
signal, we use language feedback collected from human trainers. We also modify the binary reward
signal in order to standardize non-environment reward during training. More formally, Let S denote
the set of states in the agent’s environment, and let A denote the set of legal actions the agent can
execute. The execution of actions (a1, a2, · · · , an) result in a state trajectory τ = (s0, s1, s2, · · · , sn)
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where n is either the terminal state in an episode of the training horizon ( < the max number
of training steps). The human trainer observes the state trajectory and provides natural language
feedback, (`1, `2, · · ·), that convey their personal evaluation of the agent’s behavior. We hard code the
scalar-valued feedback signals, (h1, h2, · · ·), as a means to optimize the training process and allow
for uniformity across training sessions. We hypothesize that improved agent performance would be
the result of quality language feedback, not a dense reward function. We model the reward signal
R(s, a) for a given state and action pair by taking the Euclidean distance d between the agent and
nearest critical point along the optimal trajectory, determined by a human expert (see Figure 3).

Figure 3: Map of the critical positions encoded in Room 1 of Montezuma’s Revenge. These positions
inform the reward function R(s, a) the appropriate scalar reward signal to feed to the environment.

d =
√

(x− x′)2 + (y − y′)2 (2)

R(s, a) = { 1 d < α0α < d < β − 1β < d (3)

where the lower threshold β and upper threshold α are set the 8 and 20 respectively. We determined
the best threshold values from repeated trial and error (or hyperparameter search). We also penalize
the agent with negative reward if it is stationary in the same state for more than 10 time steps. We do
this because early on in training, we noticed the agent tends to hide in the regions of the environment
with 0 reward. Thus to encourage exploration and prevent the agent from getting "stuck", we include
this extra reward shaping condition.

When `i is available, we use it to compute the saliency map using the template matching technique
described in Chapter 3. Then, we compute the predicted reward given the original state observation
s,and the predicted reward with the saliency map s′. When the model is updated and the loss
propagated backward through the weights, we use these two rewards to compute an L2 regularization
and add it onto the calculated MSE loss. We include this additional loss to force the model weights to
0 for unimportant state observation features.

L2 =

n∑
i=1

|yoriginal − ysaliency|2 (4)

where yoriginal is the predicted reward when the original observation is fed as input into our deep
model and ysaliency is the predicted reward given the saliency map as input. When ` is not available,
we ignore the L2 loss entirely and set it to 0. Now, our completed loss function that we aim to
minimize looks like:

L =MSE + α · L2 (5)

where the regularization rate is 0.0001. We adopt a greedy policy for action selection. Given the
vector of predicted rewards from the model, the agent selects the action associated with the greatest
reward.

4.2 Calibration

For calibration, we develop an approach similar to [13]. Since uncertainty estimates are required, we
use a Bayesian neural network (BNN) to provide uncertainty estimates to each action. This provides
us with a mean and variance estimate of the expected human-based reward for each action. As these
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variances are not calibrated with respect to the frequency of these actions, we apply Platt scaling to
recalibrate the network at the end of each episode. This is done by sampling from the replay buffer,
freezing all weights in the network except for the parameters of the Platt scaling, and training for a
number of steps. During typical training, we freeze the Platt scaling parameters.

These uncertainty estimates can then be used with a UCB-style algorithm to choose the action which
has the highest reward confidence interval. In particular, we use UCB to derive an action:

aUCB
t = argmaxa∈AQ̂(A) + Û(a). (6)

Our calibrated agent is then takes advantage of the saliency map and the natural language feedback to
produce potentially high reward behaviors through exploration.

5 Experiments and Results

We pre-trained an auto encoder for feature extraction on the image data set from [4], which was
adapted from the Atari Grand Challenge data set [11], which contains hundreds of crowd-sourced
trajectories of human game plays on 5 Atari games, including Montezuma’s Revenge. We only used
image from Room 1 in Montezuma’s Revenge, which amounted to roughly 2, 000 images with which
to train our auto encoder.

We used the Deep TAMER model with a replay buffer, which we will henceforth refer to as TAMER
Repay, as our baseline. While the Deep TAMER with Credit Assignment was the best performing
model in [23], the success was largely based on the hand selected credit assignment window. We
chose a simpler TAMER implementation to narrow the field of experimental variables in order to
better highlight the effects language had on model calibration. We focus more on exploring the
benefit of language throughout the training process rather than task completion. We set the training
interval to 10, 000 steps, with 100 warm up steps at the beginning of each trial to introduce variety
in the agent starting position. We compute performance as an average across 10 sessions. This was
necessary due to the extreme variability in training sessions. We could not rely on a single session to
demonstrate an authentic data trend.

Figure 4: Synthetic Feedback Language. Table showing the synthetic language assigned to each
critical position along the optimal trajectory. The position −1 is everywhere else in the environment
that is not marked with a position numbered 0− 5. Each utterance contains the template name that
we reason are important for the model to focus in that stage of the task.

Our initial intention was to collect natural language feedback, however we settled on using synthetic
language due to time constraints. The language feedback was hard coded into a generator function
that returned the most applicable feedback given the agent’s current position and its previous position
(See Figure 4). As mentioned previously, we captured the agent’s progress throughout Room 1 in
Montezuma’s Revenge by marking “critical positions" along the optimal trajectory set by a human
expert. When the agent found itself in a critical position, the language generation function would
deliver feedback aimed toward getting the agent to the next critical position. When the agent is
not on the optimal path or in transition from one critical position to the next, its position is labeled
−1. When deciding which feedback is best suited for transitionary states (when the agent’s current
position is −1), we need to consider its position along the optimal path. We find the agent’s distance
to the nearest critical position, all lives intact, and send feedback relevant to reaching that location.
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Figure 5: These results show the mean number of times the agent reached each position 1, 2, and 3
over 10 trials along with confidence bounds. (Left) The number of times each agent reached position
0. (Middle) The number of times each agent reached position 1. (Right) The number of times each
agent reached position 2.

Because the saliency map is being generated via template matching scheme, the actual semantics
of the feedback is less important than the content from which we extract tokens used to search the
template space for matches. The agent often gets “stuck" in the upper corners of environment near
the gates. In this case, we use a position buffer to track its movement. If the position buffer contains
the same coordinates, we set the appropriate flag and stop feeding the model saliency maps. The
intuition behind this decision is that the agent will become unstuck faster when the model receives
complete information of the environment. Since we do not use live human trainers for feedback, we
also needed to reason about how often feedback would be available, and consequently saliency maps.
It is unrealistic to expect a human to provided natural language feedback at every time step. Not only
would this precedent be laborious for the participant, but contradictory to our goal of making agent
training faster and more efficient. We settled on a feedback interval of 10 seconds after several trials,
determining the parameter value struck the right balance between often enough and too much.

In Figure 5, we compute number of times the agent reaches a critical position along the optimal
trajectory. We show the results for four agent-types: a baseline agent which does not use any feedback,
a feedback agent that uses only the saliency map, a blind agent which uses natural language feedback
with a blurred observation, and a calibrated agent which calibrates the blind agent. Our results show
that the calibrated agent outperforms every other agent and learns faster. Additionally, all other
agents never reached the fourth position; however, the calibrated agent reached that position twice on
average at the end of training. Without calibration, language provides little increase in performance
in Montezuma’s revenge; however, a calibrated model allows the agent to make better decisions.

6 Conclusion

We explore a novel approach to Reinforcement Learning (RL) that uses natural language feedback to
provide supervised attention. We compared a TAMER model with the additional of natural language
generated saliency maps to the baseline and found language had no significant improvement or
worsened performance on Montezuma’s Revenge, a popular video game in the Atari Arcade suite.
This led to the construction of a blind agent training scheme, where the salient information passed to
the model only contained the agent position, which also showed little increase in performance. Lan-
guage on its own was unable to allow the agent to proceed; however, a calibrated deep reinforcement
learning model allows the agent to build a richer understanding of the environment and make better
decisions. We conclude that model calibration of deep reinforcement learning allows the agent to
take advantage of its inputs, such as language, and allows language-guided agents to learn faster in
this reward-sparse environment.

More rigorous studies need to be conducted in this area to ensure the effectiveness of model calibration.
Having uncertainty estimates may allow for interesting behaviors to emerge in tasks such as action
advising [18], where the agent could ask for help based on a calibrated uncertainty estimate of its
actions. These results can be leveraged in the construction of sample-efficient, feedback-driven
reinforcement learning agents.
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